skip to main content


Search for: All records

Creators/Authors contains: "DeLongchamp, Dean M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polarized resonant soft X-ray scattering (P-RSoXS) has emerged as a powerful synchrotron-based tool that combines the principles of X-ray scattering and X-ray spectroscopy. P-RSoXS provides unique sensitivity to molecular orientation and chemical heterogeneity in soft materials such as polymers and biomaterials. Quantitative extraction of orientation information from P-RSoXS pattern data is challenging, however, because the scattering processes originate from sample properties that must be represented as energy-dependent three-dimensional tensors with heterogeneities at nanometre to sub-nanometre length scales. This challenge is overcome here by developing an open-source virtual instrument that uses graphical processing units (GPUs) to simulate P-RSoXS patterns from real-space material representations with nanoscale resolution. This computational framework – calledCyRSoXS(https://github.com/usnistgov/cyrsoxs) – is designed to maximize GPU performance, including algorithms that minimize both communication and memory footprints. The accuracy and robustness of the approach are demonstrated by validating against an extensive set of test cases, which include both analytical solutions and numerical comparisons, demonstrating an acceleration of over three orders of magnitude relative to the current state-of-the-art P-RSoXS simulation software. Such fast simulations open up a variety of applications that were previously computationally unfeasible, including pattern fitting, co-simulation with the physical instrument foroperandoanalytics, data exploration and decision support, data creation and integration into machine learning workflows, and utilization in multi-modal data assimilation approaches. Finally, the complexity of the computational framework is abstracted away from the end user by exposingCyRSoXSto Python usingPybind. This eliminates input/output requirements for large-scale parameter exploration and inverse design, and democratizes usage by enabling seamless integration with a Python ecosystem (https://github.com/usnistgov/nrss) that can include parametric morphology generation, simulation result reduction, comparison with experiment and data fitting approaches.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    The doping levels of conjugated polymers significantly influence their conductivity, energetics, and optical properties. Recently, a highly conductive n‐doped polymer called poly (3,7‐dihydrobenzo[1,2‐b:4,5‐b′]difuran‐2,6‐dione) (poly(benzodifurandione), n‐PBDF) is discovered, opening new possibilities for n‐type conducting polymers in printed electronics and other fields. Controlling the doping level of n‐PBDF is of great interest due to its wide range of potential applications. Here controlled dedoping and redoping of n‐PBDF is reported and a mechanistic understating of such a process is provided. Dedoping occurs through electron transfer and proton capture, wherein the ionic dopants, tris(4‐bromophenyl)ammoniumyl hexachloroantimonate (Magic Blue), exhibit efficient proton capture ability and stronger interaction with n‐PBDF, resulting in high dedoping efficiency. Moreover, chemically dedoped PBDF can be redoped using various proton‐coupled electron transfer agents. By manipulating the doping levels of n‐PBDF thin films, ranging from highly doped to dedoped states, the system demonstrates controllable conductivity in five orders of magnitude, adjustable optical properties, and energetics. As a result, these characteristics demonstrate the potential applications of n‐PBDF in organic electrochemical transistors and thermoelectrics.

     
    more » « less
  3. Free, publicly-accessible full text available July 1, 2024
  4. null (Ed.)
  5. We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction. Understanding of the mechanism enables informed engineering of different levels of smectic order in vapor-deposited glasses to suit various applications. The preparation of a glass with orientational and translational order from a nonliquid crystal opens up an exciting paradigm for accessing extreme anisotropy in glassy solids. 
    more » « less
  6. The rational creation of two-component conjugated polymer systems with high levels of phase purity in each component is challenging but crucial for realizing printed soft-matter electronics. Here, we report a mixed-flow microfluidic printing (MFMP) approach for two-componentπ-polymer systems that significantly elevates phase purity in bulk-heterojunction solar cells and thin-film transistors. MFMP integrates laminar and extensional flows using a specially microstructured shear blade, designed with fluid flow simulation tools to tune the flow patterns and induce shear, stretch, and pushout effects. This optimizes polymer conformation and semiconducting blend order as assessed by atomic force microscopy (AFM), transmission electron microscopy (TEM), grazing incidence wide-angle X-ray scattering (GIWAXS), resonant soft X-ray scattering (R-SoXS), photovoltaic response, and field effect mobility. For printed all-polymer (poly[(5,6-difluoro-2-octyl-2H-benzotriazole-4,7-diyl)-2,5-thiophenediyl[4,8-bis[5-(2-hexyldecyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl]) [J51]:(poly{[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)}) [N2200]) solar cells, this approach enhances short-circuit currents and fill factors, with power conversion efficiency increasing from 5.20% for conventional blade coating to 7.80% for MFMP. Moreover, the performance of mixed polymer ambipolar [poly(3-hexylthiophene-2,5-diyl) (P3HT):N2200] and semiconducting:insulating polymer unipolar (N2200:polystyrene) transistors is similarly enhanced, underscoring versatility for two-componentπ-polymer systems. Mixed-flow designs offer modalities for achieving high-performance organic optoelectronics via innovative printing methodologies.

     
    more » « less
  7. null (Ed.)
  8. The field-effect electron mobility of aqueous solution-processed indium gallium oxide (IGO) thin-film transistors (TFTs) is significantly enhanced by polyvinyl alcohol (PVA) addition to the precursor solution, a >70-fold increase to 7.9 cm2/Vs. To understand the origin of this remarkable phenomenon, microstructure, electronic structure, and charge transport of IGO:PVA film are investigated by a battery of experimental and theoretical techniques, including In K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS); resonant soft X-ray scattering (R-SoXS); ultraviolet photoelectron spectroscopy (UPS); Fourier transform-infrared (FT-IR) spectroscopy; time-of-flight secondary-ion mass spectrometry (ToF-SIMS); composition-/processing-dependent TFT properties; high-resolution solid-state1H,71Ga, and115In NMR spectroscopy; and discrete Fourier transform (DFT) analysis with ab initio molecular dynamics (MD) liquid-quench simulations. The71Ga{1H} rotational-echo double-resonance (REDOR) NMR and other data indicate that PVA achieves optimal H doping with a Ga···H distance of ∼3.4 Å and conversion from six- to four-coordinate Ga, which together suppress deep trap defect localization. This reduces metal-oxide polyhedral distortion, thereby increasing the electron mobility. Hydroxyl polymer doping thus offers a pathway for efficient H doping in green solvent-processed metal oxide films and the promise of high-performance, ultra-stable metal oxide semiconductor electronics with simple binary compositions.

     
    more » « less
  9. Abstract

    Due to a general paucity of suitable characterization methods, the internal orientational ordering of polymer fibrils has rarely been measured despite its importance particularly for semi‐conducting polymers. An emerging tool with sensitivity to bond orientation is polarized resonant soft X‐ray scattering (P‐RSoXS). Here, P‐RSoXS reveals the molecular arrangement within fibrils (if type I or type II fibrils), the extent of orientation in the fibril crystal, and an explicit crystal‐amorphous interphase. Neat films as well as binary blends with a fullerene derivative are characterized for three different polymers, that are prototypical materials widely used in organic electronics applications. Anisotropic P‐RSoXS patterns reveal two different fibril types. Analysis of theq‐dependence of the anisotropy from simulated and experimental scattering patterns reveal that neat polymer fibrillar systems likely comprise more than two phases, with the third phase in addition to crystal and amorphous likely being an interphase with distinct density and orientation. Intriguingly, the fibril type correlates to the H‐ or J‐aggregation signature in ultraviolet‐visible (UV–vis) spectroscopy, revealing insight into the fibril formation. Together, the results will open the door to develop more sophisticated structure‐function relationships between chemical design, fibril type, formation pathways and kinetics, interfacial ordering, and eventually device functions.

     
    more » « less